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Abstract. The thermal and mechanical properties of Mg-Gd intermetallics MgGd, MgGd2 and MgGd3

are studied using a modified analytical embedded atom method. Calculated results agree well with the
available experimental data and other theoretical results. The results on the elastic constants suggest that
thermal softening behavior is observed as the temperature increases and the bulk moduli of ordered phases
are larger than that of elemental Mg above 300 K. The heat capacities of MgGd, Mg2Gd and Mg3Gd
are 22.91, 23.04 and 23.09 J mol K−1, respectively, at 300 K. Furthermore, the addition of Gd gives rise
to an increase of c/a. With the same content of Gd, the ratio c/a remains unchanged with increasing
temperature, whereas this phenomenon does not occur in pure Mg, which indicates that the temperature-
independent c/a restrains the occurrence of non-basal slip and twinning. Hence the addition of Gd can
enhance the strength of Mg, in good agreement with experimental observation.

PACS. 62.20.Dc Elasticity, elastic constants – 65.40.-b Thermal properties of crystalline solids – 31.15.Ct
Semi-empirical and empirical calculations

1 Introduction

Magnesium alloys are attractive as comparatively light
structural materials. However, they often show poor
strength and creep resistance at elevated temperatures.
For wider application, it is important to improve strength
and creep resistance at elevated temperatures. It is well
known that the addition of rare earth metals can opti-
mize mechanical properties and improve creep resistance
of magnesium alloys [1–6]. Recently, it was reported that
the addition of Gd is effective for improving strength and
creep resistance of magnesium alloys at elevated tempera-
ture [1,2,7]. Because Gd is a rather expensive metal, it is
reasonable to limit its contents to not more than 10 wt.%,
although the highest strength of the Mg-Gd binary alloys
takes place at approximately 20 wt.%. When Gd content
is 20 wt.%, the density of Mg alloys increases to about
2.05 g cm−3, which is also a limitation. Thus the strength
of Mg-Gd alloys is anticipated to be improved by additions
of metals such as Y and Nd [1,8].

Thermal, metallographic and X-ray analyses by
Manfrinetti [9] have shown that the Gd-Mg phase dia-
gram is characterized by four intermediate compounds,
GdMg (CsCl-type), GdMg2(MgCu2-type), GdMg3 (BiF3-
type) and GdMg5 (GdMg5-type). The equilibrium solid
solubility of Gd in magnesium is relatively high (4.53 at.%
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or 23.49 wt.%) at 821 K and decreases exponentially, to
0.61 at.% (3.82 wt.%) as the temperature decreases to
573 K.

In the present work, a modified analytical embedded
atom model (EAM) [9] with potential parameters of the
pure Gd and Mg metals are used as interatomic poten-
tial parameters, using molecular dynamics (MD) to in-
vestigate the physical properties of ordered Gd-Mg alloys
(especially, GdMg (CsCl), GdMg2 (Cu2Mg), and GdMg3

(BiF3)) such as lattice parameter, cohesive energy, en-
thalpy of formation, and heat capacity. To date only a
few reports of the elastic constants and the bulk modu-
lus of Mg-Gd intermetallics are available in the literature.
So we calculated elastic constant and bulk modulus for
Mg-Gd intermetallics at various temperatures. Further-
more, solution-strengthening properties of Mg-Gd alloys
were also investigated. The results are compared with the
available experimental and theoretical data.

2 Embedded atom method

The basic modified analytical embedded atom method
(EAM) equations for hcp metals are given [10] by

Et =
∑

i

Fi(ρi) +
1
2

∑

j

φ(rij) + Mi(Pi) + Ni(Qi) (1)
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with the host electron density

ρi =
∑

j( �=i)

f(rij) (2)

and the argument of the energy modification term

Pi =
∑

j( �=i)

f12(rij) (3)

Qi =
∑

j( �=i)

f21(rij). (4)

The atomic electron density f(rij) is taken as the same
function as used by Johnson [11]

f(rij) = fe

(
r1

rij

)4.5 (
rce − rij

rce − r1

)2

(5)

where fe is the scaling factor, which is a constant in the
specific alloys. f(r) is truncated at rce = r8 + kc(r9 − r8),
where r8 and r9 are the 8th and 9th nearest neighbor
distance for a perfect hcp crystal with its actual c/a ratio,
respectively. f(r) is 0 if r is larger than rce.

The embedding function F (ρi) is taken as the universal
form by Johnson [11]

F (ρi) = −F0

[
1 − n ln

(
ρi

ρe

)] (
ρi

ρe

)n

(6)

where F0 is a constant, ρe takes its equilibrium value. n
is an adjustable parameter.

The hcp metal pair potential is taken as

φ(rij) =
6∑

m=−1

km

(
rij

r1

)m

. (7)

The atomic interactions is truncated at a specific cutoff
distance rc = r7+kc(r8−r7). kc is a adjustable parameter,
which ensures no oscillation in the pair potential and the
crystal stability.

The energy modification term is empirically taken as

M(Pi) =
α

4
(P − Pe)2

(P + Pe)2
(8)

N(Qi) =
β

4
(Q − Qe)2

(Q + Qe)2
(9)

where Pe and Qe are their equilibrium values.
The Gd-Mg alloy potential is taken as

φab(r) =
1
2

[
χbrb

χara
φa

(
r
ra

rc

)
+

χara

χbrb
φb

(
r
rb

rc

)]

− µ

∣∣∣∣φ
a

(
r
ra

rc

)
− φb

(
r
rb

rc

)∣∣∣∣ (10)

where the superscripts a, b indicate atom a-, b- respec-
tively. φa(r) and φb(r) are the monatomic potentials which
could be given by the monatomic models. χ is chemical
scale. ra and rb are a- and b-type atoms parameter, respec-
tively, rc and µ are alloy adjustable parameters, 3.3773 Å
and 0.01, respectively. The above Gd and Mg parameters
are given in Tables 1, 2.

3 Simulation details

The physical properties for Gd-Mg ordered alloys are sim-
ulated using molecular dynamics. The equations of mo-
tion are solved using a fourth-order predictor-corrector
algorithm of Gear with a time step of 3×10−15 s [12].
The simulations are carried out in two ensembles succes-
sively. Some thermal properties such as lattice constant,
cohesive energy, enthalpy of formation and density are
determined from the constant temperature-constant pres-
sure (NPT) ensemble simulations. Finally, the constant
volume-constant temperature (NVT) ensemble is used to
compute the elastic constants, heat capacity, free energy
and vibrational entropy. The simulation boxes for GdMg,
GdMg2, and GdMg3 intermetallic compound system are
10a× 10a× 10a× 2 = 2000 6a× 6a× 6a× 16 = 3456, and
6a× 6a × 6a × 24 = 5184 particles, respectively.

The fluctuation formula for the calculation of the elas-
tic constants [13,14] is given as

Cαβγκ =
Ω0

kBT
(〈PαβPγκ〉 − 〈Pαβ〉 〈Pγκ〉)

+
2NkBT

Ω0
(δαγδβκ + δακδβγ) + 〈χαβγκ〉 (11)

where 〈〉 denotes the averaging over time and Ω0 is the ref-
erence volume for the model system. The first term repre-
sents the contribution of the fluctuation of the microscopic
stress tensor, Pαβ , the second term is the kinetic energy
contribution and the third term represents the contribu-
tion of the Born term to the elastic constant. The bulk
modulus could be obtained from B = (C11 + 2C12)/3 for
a cubic lattice.

In addition, in order to compare with EAM calcula-
tions, the calculations employed density functional theory
under the local density approximation (LDA) embodied
in the Vienna ab initio simulation package (VASP) [15].
Exchange and correlation energies are treated using the
generalized gradient approximations (GGA) by Perdew
and Wang (PW91) [16]. Projector augmented wave (PAW)
functions [17] are used. The energy cut-off is chosen to be
400 eV. Brillouin-zone integrations were performed using
Monkhorst and Pack [18] k-point meshes, the k-meshes
for MgGd (CsCl), Mg2Gd (Cu2Mg) and Mg3Gd (BiF3)
structures are 11 × 11 × 11, 9 × 9 × 9 and 9 × 9 × 9, re-
spectively.

4 Results and discussion

4.1 Lattice parameter, energy and volume thermal
expansion

Table 3 shows the results of the cohesive energy and
the equilibrium lattice constants for various intermetal-
lic phases calculated from the NPT ensemble averaged
over 30 000 time steps at various temperatures along with
the available experimental data [9] as well as VASP cal-
culations at 0 K. The EAM calculated lattice parameters
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Table 1. Parameters of the many-body potentials for Gd and Mg. n, fe, χ and kc are dimensionless, F0, α, and β in eV,
rp(p = a, b) in Å.

n F0 α β kc rp χ fe

Gd 0.41 2.556686 −0.006727 −0.0082697 0.58 3.6519 0.6975 0.09
Mg 0.55 0.759298 0.041349 −0.014632 0.10 3.1851 1.2800 0.25

Table 2. Parameters of the many-body potentials for Gd and Mg. ki (i = −1, 0, 1, 2, 3, 4, 5, 6) in eV.

k−1 k0 k1 k2 k3 k4 k5 k6

Gd 240.3793 −1142.5595 2316.513 −2601.5713 1747.357 −701.1007 155.398 −14.6617
Mg 33.19977 −113.80804 144.6182 −75.965385 2.532347 14.24935 −5.65034 0.69368

Table 3. Comparisons of the lattice constant, cohesive energy and density for different intermetallic phases, predicted from
NPT ensemble at various temperatures, including the available experimental data [9] as well as VASP results.

T (K) GdMg (CsCl) GdMg2 (MgCu2) GdMg3 (BiF3)
Ec/kJmol−1 a /Å Ec/kJmol−1 a /Å Ec/kJmol−1 a /Å

0 −292.75 3.7976,3.811a −250.86 8.5411,8.547a −221.122 7.4020,7.323a

100 −291.46 3.8049 −249.60 8.5563 −219.94 7.4179
200 −290.13 3.8130 −248.31 8.5751 −218.69 7.4373
300 −288.76 3.8215,3.820b −247.01 8.5945,8.575b −217.33 7.4560,7.324b

400 −287.36 3.8300 −245.70 8.6127 −215.89 7.4750
500 −285.92 3.8387 −244.36 8.6327 −214.42 7.4936
600 −284.50 3.8476 −242.99 8.6526 −212.87 7.5145
700 −282.89 3.8577 −241.62 8.6712 −211.24 7.5362
800 −281.33 3.8676
900 −279.76 3.8776

a Calculated from VASP; b reference [9].

for GdMg, GdMg, GdMg2, and GdMg3 ordered alloys are
compared with the experimental and VASP results, which
show good agreement, within about 1%. As shown in Ta-
ble 3, it is noted that the cohesive energy and the lattice
constants for each ordered phase increase as the temper-
ature increases.

Experimentally and theoretically, the enthalpies of
formation for GdMg, GdMg2, and GdMg3 intermetal-
llics are −17.5, −20.0 and −19.0 kJ mol−1 reported by
Pahlman [19], and −17.2, −19.8 and −16.0 kJ mol−1

calculated by Cacciamani [20], respectively. The present
EAM calculated results of GdMg, GdMg2 and GdMg3 are
−16.65, −17.13, −12.37 kJ mol−1, respectively, at 300 K.
The comparison with experiment [19] and other theoreti-
cal data [20] shows a satisfactory agreement for those in-
termetallics.

The coefficient of thermal volume expansion is calcu-
lated as follows

αP =
1

V (T )

(
∂V (T )

∂T

)

P

. (12)

The values of thermal expansion calculated form equation
(12) at 300 K for MgGd, MgGd2 and MgGd3 ordered al-
loy are listed in Table 4, with experimental data [21,22]
included. The value of thermal expansion calculation for
Gd is in good agreement with the experimental data [21],
while the value of Mg is slightly larger than that of exper-
iment [22].

Table 4. Coefficients of thermal expansion for Mg, Gd pure
metals and their alloys. Thermal expansion values of the metals
along with available experimental data [21,22] at 300 K.

Mg Gd MgGd MgGd2 MgGd3

αP × 10−5(K−1) This work 8.80 4.52 6.22 6.18 7.20

Experiment 7.51 4.65

4.2 Elastic constant and bulk modulus

In this study, 30 000 steps are employed to relax in NVT
ensemble, then elastic constants are calculated using the
fluctuation expression (11) by taking the average over
30 000 time steps. At each temperature, 50 000 steps were
carried out to achieve equilibrium. The density obtained
from the NPT ensemble by averaging over 30 000 time
steps is used to specify the volume of the NVT ensem-
ble. The elastic constants and bulk modulus of MgGd,
Mg2Gd, and Mg3Gd ordered alloys predicted from the
present EAM at various temperatures and VASP at 0 K
are listed in Table 5, where the VASP calculated elas-
tic constants are described in detail in reference [23]. For
MgGd, there is some discrepancy between the EAM and
VASP calculations. Additionally, it can be noted that C12

is larger than C44 from the present EAM, on the contrary,
C12 is smaller than C44 using VASP. For the other ordered
alloys, the theoretical or experimental data on elastic con-
stants are not available in the literature. As shown in
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Table 5. Elastic constants and bulk modulus of different ordered alloys at various temperatures, calculated from NVT ensemble.
Elastic constants and bulk modulus are in units of GPa. Bulk modulus are calculated from the expression of B = (C11 +2C12)/3
for the cubic systems. The values in the parentheses are the VASP calculations.

Phases T (K) C11 C12 C44 B
GdMg 0 85.51(55.09) 59.22(35.84) 21.20(42.02) 67.98(42.26)

100 67.78 48.12 40.87 54.67
300 60.95 45.47 37.61 50.63
400 58.63 43.62 36.03 48.62
500 56.72 41.77 34.51 46.75
600 55.11 40.17 33.21 45.15
700 53.51 38.38 31.72 43.42
800 52.16 37.53 30.50 42.41
900 51.11 36.32 29.23 41.25

GdMg2 0 61.52 29.11 24.57 39.91
100 53.60 27.59 22.16 36.26
200 53.43 26.85 21.12 35.71
300 53.34 26.50 20.10 35.45
400 53.16 26.42 20.00 35.33
500 52.72 26.33 19.85 35.13
600 52.22 26.12 19.70 34.82
700 51.19 25.91 19.57 34.34

GdMg3 0 70.58 57.67 47.50 61.97
100 59.48 49.24 37.06 52.65
200 55.92 46.38 36.51 49.56
300 52.41 43.38 34.85 46.39
400 49.88 40.84 33.08 43.85
500 48.16 38.76 31.48 41.89
600 46.68 36.80 29.89 40.09

Table 5, elastic constants decrease as temperature in-
creases, indicating thermal softening of the alloy.

In Table 6, the contributions of kinetic-energy, fluc-
tuation and Born terms to elastic constants for MgGd
are tabulated separately to show the respective weights of
these terms in the simulation results. The corresponding
weights of these terms for other ordered alloys are similar
to that of B2-MgGd. The largest contribution comes from
the Born term to elastic constants as shown in Table 6.
The fluctuation contribution is negative for all elastic con-
stants. Fluctuation contribution increases with tempera-
ture. This is due to a broader distribution of the micro-
scopic stress tensor. The kinetic energy terms are small
(1–2%) for all elastic constants at various temperatures,
but they increase with temperature except for all C12.
The kinetic energy terms of all C12 are zero because of
the Kronecker delta in equation (11).

The temperature dependence of bulk moduli of ordered
phases and pure metals Mg and Gd is shown in Figure 1,
as well as available experimental data [24,25]. The bulk
modulus of Mg2Gd varied slightly with increasing temper-
ature, whereas that of MgGd and Mg3Gd varied sharply.
Above 300 K, the bulk modulus of ordered phases are
larger than that of elemental Mg, which indicates that
those ordered phases may be strengthening phases in Mg-
Gd system. In fact, there are other strengthening mech-
anism in Mg-Gd system, such as solution-hardening and
precipitation-hardening, as reported in experiments [1,26].

The above calculated elastic constant results for Mg-
Gd alloys show that the crystals are elastically stable since

Fig. 1. The temperature dependence of bulk modulus for or-
dered phases and pure metals Mg and Gd, along with the avail-
able experimental data [24,25].

the stability conditions C44 > 0, C11 > 0, and C11 > C12

are satisfied and thermal softening behavior is observed as
the temperature increases.

4.3 Vibrational density of states and heat capacity

In this section, we focus our attention on the thermody-
namic properties. The velocity autocorrelation function is
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Table 6. The contributions to elastic constants of MgGd intermetallic alloy due to the Born, Fluctuation and Kinetic energy
terms for the present EAM calculations. The units are in GPa.

T/K Born term Fluctuation term Kinetic energy Total
300 C11 70.61 −10.25 0.59 60.95

C12 52.46 −6.99 0.00 45.47
C44 44.69 −7.38 0.30 37.61

400 C11 68.20 −10.36 0.79 58.63
C12 50.74 −7.12 0.00 43.62
C44 43.00 −7.36 0.39 36.03

500 C11 66.33 −10.59 0.98 56.72
C12 49.07 −7.30 0.00 41.77
C44 41.43 −7.41 0.49 34.51

600 C11 64.59 −10.64 1.16 55.11
C12 47.56 −7.39 0.00 40.17
C44 39.94 −7.31 0.58 33.21

700 C11 62.94 −10.78 1.35 53.51
C12 45.91 −7.53 0.00 38.38
C44 38.35 −7.30 0.67 31.72

Zα(t) defined as

Zα(t) =
〈viα(0)viα(t)〉

〈viα(0)2〉 (13)

where viα(t) is the velocity of particle i of type α at time
t and 〈〉 denotes an ensemble average as well as average
over all particles of type α. The vibrational density of
states Gα(ω) is obtained from the Fourier transform of
the velocity-velocity correlation function

Gα(ω) =
6Nα

π

∫ ∞

0

Zα(t) cos(ωt)dt. (14)

There are several approaches to the calculation of free en-
ergies, constant volume heat capacity and vibrational en-
tropies of solids. A common approach is via the vibrational
density of states of the solids. In the harmonic approxima-
tion the free energy (F ) per atom, constant volume heat
capacity per atom and vibrational entropy (S) per atom
of a crystal lattice [27] is given by,

F = 3kBT

∫
dω ln {2 sinh [�ω/(2kBT )]}G(ω) (15)

Cv = 3kB

∫
dω

(
�ω

2kBT

)2 {
sinh2 [�ω/(2kBT )]

}−1
G(ω)

(16)

S = 3kB

∫
dω

(
�ω

2kBT
coth [�ω/(2kBT ]

− ln {2 sinh [�ω/(2kBT )]})G(ω) (17)

where kB is Boltzmann’s constant and � is reduced
Planck’s constant. Thus, once the vibrational density of
states of a crystal lattice is calculated, one can easily de-
termine its vibrational free energy, heat capacity and vi-
brational entropy.

The vibrational density of states (VDOS) for MgGd,
Mg2Gd and Mg3Gd ordered alloys at various tempera-
tures are given in Figure 2. The VDOS for each alloy is

Fig. 2. Vibrational density of states for MgxGd1−x compounds
at various temperatures.

normalized to 1. The space group of ordered alloys MgGd,
Mg2Gd and Mg3Gd is Pm3̄m, Fd3̄m and Fm3̄m, respec-
tively. The features of the VDOS are more complex as the
symmetry decreases and the number of atoms per cell in-
creases. Figure 2 represents those properties. For the same
ordered alloy, the VDOS shifts to low frequency with in-
creasing temperature. Figure 3 gives the partial VDOS
of MgGd at 300 K. The partial VDOS of other alloys is
similar to that of the MgGd ordered alloy. As shown in
Figure 3, the VDOS at low frequency originates from the
Gd atom, while the VDOS at high frequency comes from
the Mg atom, and the contribution of Gd vibrations dom-
inates since it is heavier than Mg.

The heat capacities for MgGd, Mg2Gd and Mg3Gd
alloys are calculated in this paper at 300 K. Their values
are 22.91, 23.04 and 23.09 J mol K−1, respectively.
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Fig. 3. The partial vibrational density of states for MgGd
alloys at 300 K.

Fig. 4. The temperature dependence of vibrational free energy
F and vibrational entropy S for MgGd alloy.

Using the obtained vibrational density of states,
Gα(ω), the free energy and vibrational entropy of MgGd,
Mg2Gd and Mg3Gd alloy is calculated. The MgGd in-
termetallic calculated results are plotted in Figure 4, the
other intermetallics have the same characteristics. It is
clear that the alloy free energy decreases with increasing
temperature, while the vibrational entropy of the alloy
increases, due to increasing disorder state.

4.4 Effect of Gd on lattice parameters and strength
in Mg

Magnesium with hexagonal close-packed crystal structure
has three slip systems: a basal slip system of (0001)〈112̄0〉,
a prismatic slip system of {101̄0}〈112̄0〉 and a pyramidal
slip system of {101̄1̄}〈112̄0〉. The latter two slip systems
act together in many cases and are called the non-basal
slip system versus the basal slip system. Magnesium is
plastically-deformed by the basal slip and twinning mainly
at relatively low temperature. The critical resolved shear
stress for the basal slip in pure magnesium is very low,
approximately 0.6–0.7 MPa, at room temperature, and is

independent of temperature. In contrast, the critical shear
stress for the non-basal slip is over 40 MPa at low temper-
ature, which is two orders of magnitude higher than that
for the basal slip, and drastically decreases to 2–3 MPa
with increasing temperature [28].

Experimentally, the equilibrium solid solubility of Gd
in magnesium is relatively high (4.53 at.%) at 821 K and
decreases exponentially, with a decrease in temperature, to
0.61 at.% at 573 K. It has been reported that the addition
of Gd is effective for improving strength and creep resis-
tance of magnesium alloys at elevated temperature [1,2,7].
So in this paper, we simulated effect of Gd on lattice pa-
rameter and strength in Mg.

The variation of lattice parameter with temperature
in pure Mg and Mg100−xGdx (x = 0.5, 1, 2, 3, 4 at.%) al-
loy is shown in Figure 5, along with the experimental
data [22]. By adding Gd atoms, the lattice parameters
(a, c) and the axis ratio (c/a) become larger, and the a and
c in the pure Mg and Mg100−xGdx alloy increase linearly
with increasing temperature. The EAM calculations are
larger than experimental values. As shown in Figure 5c,
the c/a in Mg-0.5Gd alloy is constant with temperature,
whereas this phenomenon does not occur in pure elemen-
tal Mg. Thus, the solid solute Gd gives rise to the vari-
ation of lattice parameters, whereas the c/a remains un-
changed with increasing temperature, which indicates that
the temperature-independent c/a restrains the occurrence
of non-basal slip and twinning. The slip and twining in hcp
metals can be related to the axis ratio, c/a. Non-basal slip
hardly occurs when the c/a is large, whereas at high tem-
perature, where the c/a becomes lower, non-basal slip can
occur [29].

As an example of Mg-4Gd, the elastic constants
C11, C12, C44, C33, C13 are 69.29, 27.47, 14.65, 73.59,
19.91 GPa, respectively, at 300 K. Therefore the solid
solubility of Gd in Mg is also elastically stable, in ac-
cordance with the stability conditions of hcp crystal,
C12 > 0, C33 > 0, C44 > 0, C11 > C12, and
C11C33 + C12C33 > 2C13C13.

The variation of bulk modulus with temperature in
pure Mg and Mg100−xGdx alloys is presented in Figure 6,
along with the experimental data [24]. It can be noted that
the addition of Gd gives rise to the increase of bulk mod-
ulus of Mg at room and high temperature. This indicates
that the addition of Gd can enhance the strength of Mg,
in agreement with experiments [1,2,7]. Furthermore, the
bulk modulus of Mg increases with increasing the content
of Gd.

5 Conclusions

In this paper, we have presented a wide range of proper-
ties for ordered alloys MgGd, Mg2Gd and Mg3Gd. The
temperature dependence of physical properties for MgGd,
Mg2Gd and Mg3Gd ordered intermetallics are simulated
for the first time. The simulated thermal and mechani-
cal properties of Mg-Gd ordered alloys are in good agree-
ment with the available experimental data and the first-
principles results. The thermal volume expansion values of
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Fig. 5. Lattice parameters a, c, and c/a as a function of tem-
perature for pure Mg, Mg100−xGdx(x = 0.5, 1, 2, 3, 4 at%) al-
loys, along with the experimental data [22].

MgGd, Mg2Gd and Mg3Gd are 6.22 × 10−5, 6.18 × 10−5

and 7.20 × 10−5 K−1, respectively, at 300 K. The elas-
tic constant results show that the crystals are elastically
stable since the stability conditions C44 > 0, C11 > 0,
and C11 > C12 are satisfied and thermal softening be-
havior is observed as the temperature is increased, and
the bulk modulus of ordered phases are larger than that
of elemental Mg. Furthermore, the solid solubility of Gd
in Mg is also elastically stable, because elastic constants
are also accorded with the stability conditions of crys-
tal, C12 > 0, C33 > 0, C44 > 0, C11 > C12, and

Fig. 6. Bulk modulus of Mg as function of Gd content at room
and high temperature, as well as the experimental data [24].

C11C33 + C12C33 > 2C13C13. The addition of Gd gives
rise to the increase of c/a at room temperature. The c/a
remains unchanged with increasing temperature, whereas
this phenomenon cannot be obtained in pure Mg. This
indicates that the temperature-independent c/a restrains
the occurrence of non-basal slip and twinning. Addition-
ally, Gd increases the bulk modulus of Mg, indicating that
addition of Gd can enhance the strength of Mg, which is
in good agreement with experiment.

This work is financially supported by the National Natural
Science Foundation under contract Nos. 50371026, 50571036
and 50671035.
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